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ABSTRACT 

Paired comparison measurements of t h e  spectrum of  e l e c t r o s t a t i c  

p o t e n t i a l  f luc tua t ions  i n  a steady-state, turbulent  plasma confined i n  

a magnetic mirror geometry have been made with capaci t ive and f loa t ing  

Langmuir probes over t h e  frequency range from 0.2 t o  10.0 MHz. 

experimental conditions invest igated (5x10 I < ne - < 5x10 /cm , 
8 .- < Te 5 38 eV, 350 - < Ti 5 930 eV, Bmax = l.OT), no s ign i f i can t  differ- 

ence i n  t h e  r e l a t i v e  f'requency response was observed below 4.0 MHz. A t  

about t h i s  frequency, however, t h e  s igna l  detected by the  f loa t ing  

Langmuir probe dropped o f f  r e l a t i v e  to that of  t h e  capaci t ive probe. 

For the 

7 8 3  

The source r e s i s t ance  of  t h e  turbulent  fLuctuations sensed by t h e  

Langmuir probe was about 400 ohms. 

t o  10.0 MHz, a s igna l  was detected by the f loa t ing  Langmuir probe that 

was not detected by the  capaci t ive probe. 

be confused with t h e  turbulent  f luc tua t ions  of t he  plasma i n  t h e  

absence of pa i red  comparison tests. 

A t  higher frequencies, from 7.0 

This "spurious" s igna l  may 

INTRODUCTION 

I n  t he  last  decade, t h e  Langmuir probe has been increasingly used 

by inves t iga tors  of plasma turbulence t o  measure f luc tua t ions  of such 
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plasma-related parameters as ion  sa tura t ion  

poten t ia l .  5-8 Most turbulence theor ies  are expressed i n  terms of  

e l e c t r i c  f ield s t rength,  e l e c t r o s t a t i c  po ten t ia l ,  or  charged particle 

number dens i ty  f luc tua t ion  spectra. 

and f loa t ing  

The use of Langmuir probes t o  obtain 

data f o r  comparison with these theor ies  requi res  several assumptions. 

The first assumption, required when using biased Langmuir probes, 

i s  tha t  the sa tu ra t ion  current f luc tua t ions  are l i n e a r l y  related t o  the 

f luc tua t ions  of either the charge density,  the e l e c t r i c  field, o r  t h e  

e l e c t r o s t a t i c  po ten t i a l .  The most common assumption i s  that the ion  

sa tu ra t ion  current  f luc tua t ions  are proport ional  t o  the f luc tua t ions  i n  

charge density.  Such a r e l a t i o n  implies,  among other things,  that  the  

e lec t ron  k i n e t i c  temperature i s  constant i n  time. A second assumption 

i s  t h a t  the e f f ec t ive  source r e s i s t ance  of  the f luc tua t ions  i s  low, 

such tha t  the probe-plasma sheath does not a t tenuate ,  as a funct ion of 

frequency, the f lue tua t ions  that  would exist i n  the absence of the probe, 

A th i rd  assumption i s  tha t  the probe introduces no spurious noise due to  

processes i n  the  sheath or  on the probe surface.  One may circumvent 

the first assumption by studying only the p o t e n t i a l  f luc tua t ions  with a 

f loa t ing  Langmuir probe. The last  two assumptions, however, s t i l l  re- 

main. 

9-13 The v a l i d i t y  of  the first assumption has been inves t iga ted  

and it has been found that one cannot, i n  general ,  assume a l i n e a r  

propor t iona l i ty  between the amplitude of  i on  sa tura t ion  cur ren t  f luc-  

t ua t ions  and either densi ty  o r  p o t e n t i a l  f luc tua t ions ,  without taking 

i n t o  account f luc tua t ions  i n  other  plasma propert ies .  With respec t  t o  
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t h e  second and t h i r d  assumptions, Serafini49’ has shown that the back- 

ground turbulence spec t ra  obtained with f l o a t i n g  and pos i t i ve ly  biased 

Langmuir probes have the same proport ional  dependence on f’requency 

above a f e w  hundred kHz. 8 I n  later work, however, Seraf in i  showed t h a t  

t h e  frequency spectrum o f  a Langmuir probe operating at  ion  sa tura t ion  

differed subs t an t i a l ly  from t h a t  observed with a capaci t ive probe, at  

frequencies above 1.0 W z *  

recent  l i t e r a t u r e  t h a t  the t h i r d  assumption discussed above may not be 

va l id .  Malmberg et  have observed spurious s igna ls  over a $re- 

quency range of 50 t o  150 MHz t h a t  apparently arise i n  the  Langmuir 

probe sheath. Schmidt15 and Lencioni e t  a l .  repor t  Langmuir probe 

generated o s c i l l a t i o n s  i n  a to ro ida l  octupole at frequencies of about 

100 H Z .  

There have been i s o l a t e d  ind ica t ions  i n  t h e  

16 

The object ive of t h e  present inves t iga t ion  i s  t o  systematical ly  

tes t  the v a l i d i t y  of the second and t h i r d  assumptions discussed above 

f o r  a f l o a t i n g  Langmuir probe. 

sons i n  a plasma of  t h e  Langmuir probe, over frequencies from 0.2 to 

10 MHz, relative t o  t h a t  o f  t h e  capaci t ive probe described by Schmidt. 

The capaci t ive probe was taken as a standard of  comparison. 

pa i red  comparison tests i n  a plasma provide information about the plasma- 

probe in t e rac t ion  t h a t  cannot be obtained from conventional workbench 

This  has been done by paired compari- 

15 

These 

ca l ib ra t ions .  The range of plasma cha rac t e r i s t i c s  covered by t h i s  in -  

ves t iga t ion  i s  l is ted i n  Table I. 

ing  p o t e n t i a l  agree fo r  t h e  two probes, one may presumably use e i t h e r  

with confidence f o r  such measurements. Where they do no6 agree, t h e  

Where t h e  frequency spec t r a  of f l o a t -  
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second o r  t h i r d  assumption discussed above are presumably not  va l id ,  

and the capaci t ive probe i s  then t h e  instrument of choice f o r  t h e  

measurement of t h e  spectrum of' e l e c t r o s t a t i c  p o t e n t i a l  f luc tua t ions .  

EQUNALENT CIRmTS OF €?ROBES 

On Fig. l i s  shown a cross-sect ional  drawing of the two probes 

used i n  t h e  present inves t iga t ion .  

i n  Fig. l ( a )  i s  of conventional design, with 4 mm of O.025-m diameter 

tungsten wire project ing from a quartz i n su la t ing  sleeve. 

The shielded Langmuir probe shown 

The probe 

wire i s  surrounded by a coaxial  grounded s h i e l d  within the body of the 

probe, s t a r t i n g  6 m from t h e  probe t i p .  

comparison runs were taken with an unshielded Langmuir probe, i n  which 

t h e  probe wire was covered with a quartz s leeve t o  within 4 mm of t he  

t i p ,  and the coaxial  metal s h i e l d  did not begin u n t i l  a d is tance  of 

44 mm from t h e  probe t i p .  

Some supplementary pa i red  

The capaci t ive probe shown on Fig. l ( b )  i s  similar t o  t h a t  des- 

cr ibed by SchmidtL5 The capaci tor  p l a t e  within t h e  probe t i p  i s  

surrounded by a ceramic envelope, and i t s  l ead  wire i s  surrounded by a 

grounded coaxial  s h i e l d  which begins 6 mm from the  t i p .  Paired com- 

parison tests were a l so  conducted with a capaci t ive probe i d e n t i c a l  

w i th  t h a t  shown, but  with a pyrex envelope replacing t h e  ceramic enve- 

lope over t h e  probe t i p .  

The equivalent e l e c t r i c a l  c i r c u i t  f o r  t h e  f loa t ing  Langmuir probe 

i n  a plasma i s  shown i n  Fig. 2 (a) ,  The r e s i s t ance  Rs includes t h e  

e f f e c t s  of both t h e  ambient plasma and t h e  sheath, and i s  assumed real 

and independent of frequency. The capacitances C1 and C2 are, 
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respect ively,  that  of t h e  probe and of t h e  coaxial  cable which connects 

t h e  probe to t h e  ex te rna l  c i r c u i t .  The frequency response of t h i s  c i r -  

c u i t  i s  given by 

1 e =  
o 1 -I- jwCRs 

f o r  t h e  s igna l  which i s  detected a t  t h e  cathode follower. 

pression, Rs is  t h e  e f f ec t ive  source r e s i s t ance  of the plasma f luc-  

tua t ions ,  and C = C1 + C2. 

I n  t h i s  ex- 

The equivalent e l e c t r i c a l  c i r c u i t  o f  the capaci t ive probe i s  shown 

i n  Fig.  2(b) .  The res i s tance  Rs includes the e f f e c t s  of t h e  plasma 

and sheath. The capacitances C1 and C2 have the  same signif icance 

a s  they d id  with the  Langmuir probe. The frequency response of t h e  

capaci t ive probe equivalent c i r c u i t  shown i n  Fig. 2(b)  i s  

f o r  t he  s i g n a l  detected by t h e  ex terna l  c i r c u i t .  

The capacitances have been measured, and f o r  t h e  probe design and c i r -  

Here again C = C1 I- C2. 

c u i t r y  used i n  t h i s  inves t iga t ion  were t y p i c a l l y  found to be C = 106 pF 

and C = 0.4 pF f o r  t h e  capaci t ive probe, and C = 112 pF f o r  t h e  

Langmuir probe. 
3 

The l o w  frequency cut-off i s  determined by the input  

impedance o f  t h e  cathode followers.  The a t tenuat ion  of  t h e  capaci t ive 

probe i s  given by 

A = (cl + c2 4- c y c 3  

and is 266 for" t h e  capaci t ive probe j u s t  discussed. m i c a 1  c i r c u i t  



6 

parameters for  t h e  capal;itive and Langmuir probes used i n  t h i s  i nves t i -  

gat ion &re l is ted i n  Table 11. 

of t h e  shielded and unshielded Langmuir probes was approximately 8 pF. 

The d i f fe rence  i n  t h e  capacitance Cl 

The simple-to-sample var ia t ion  of t h e  probe capacitances was no more 

than t10 percent i n  t h i s  inves t iga t ion .  On Fig.  3 i s  p lo t t ed  t h e  

t h e o r e t i c a l  frequency response, from Eqs. (I) and (2), f o r  the parameters 

shown i n  Table TI and f o r  several source res i s tances .  The s o l i d  l i n e  i s  

t h e  response curve f o r  the shielded Langmuir probe, and the dot ted l i n e  

i s  t h e  response curve of t h e  capaci t ive probe. 

Rs, 
Langmuir probe. It w a s  f o r  t h i s  reason t h a t  t h e  capaci t ive probe was 

chosen as a standard of ccmpazison. 

For a given value of  

t h e  capaci t ive probe w i l l  roll o f f  at higher fYequencies than the 

PROBE ~ ~ ~ ~ ~ A T ~ O ~  

On Fig. 4 i s  a block diagram of the probe instrumentation used i n  

t h i s  inves t iga t ion  

long separat ion between the  probes and t h e  cathode followers. 

The experimental apparatus necess i ta ted  a 166-~m 

The 

cathode followers shown had a nominal input  impedance of  40 megohms 

shunted by 4 pF. The Tektronix U 5  amplif ier  had an e s s e n t i a l l y  f l a t  

frequency response up to 15 MHz, and was not used i n  the  d i f f e r e n t i a l  

mode f o r  t h i s  inves t iga t ion ,  

one of two spectrum analyzers, which covered t h e  ranges 0-1 MHz and 

1-10 M H Z .  

The output of' t h e  amplifier was fed i n t o  

On Fig. 5 is  shown a drawing of t h e  forked probe mount located i n  

t he  ca l ib ra t ion  cup. The inner  p l a t e  of  th i s  cup was fed with a con- 
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stant .ampli tude s inusoidal  s i g n a l  from a var iab le  frequency o s c i l l a t o r  

which spanned the range 150 Hz t o  10 NHz. The provisions for grounding 

t h e  probe mount and t h e  associated c i r c u i t r y  were ref ined  u n t i l  a f la t  

frequency response was obtained, free of  resonances and absorption. 

Fig. 6 i s  t h e  i n  s i t u  ca l ib ra t ion  of both probes 5n t h e  vacuum tank, 

with a l l  components of t h e  measuring system shown on Fig, 4 except t h e  

high-pass f i l t e r ,  I n  the i n  s i t u  ca l ibra t ion ,  t h e  frequency response 

of  both the capaci t ive and Langmuir probes was e s s e n t i a l l y  f la t  over 

the range of i n t e r e s t .  Any relative roll-off of t h e  Langmuir probe 

could therefore  be ascr ibed to the e f f e c t s  of t h e  probe-plasma i n t e r -  

ac t ion .  

The frequency response of  t h e  e n t i r e  probe system wsts measured 

before and after each series o f  runs by i n j e c t i n g  a constant amplitude 

s i g n a l  on t h e  inner  p l a t e  of t h e  ca l ib ra t ion  cup f o r  twenty frequencies 

spanning the  range of  each spectrum analyzer.  

a l l  f luc tua t ion  spec t ra  p lo t t ed  below on log-log sca l e s  have been 

Unless otherwise noted, 

corrected f o r  t h e  nonl inear i t ies  of the spectrum analyzers and of  the  

recording system. 

The superconducting magnet f a c i l i t y  i n  which t h i s  experiment was 

conducted has been described It cons is t s  of a p a i r  of 18- 

em I D  superconducting c o i l s  shown on Fig. 7, w i t h  an in s ide  diameter of  

17 an i n  a magnetic b o t t l e  configuration, The maximum magnetic f ie ld  

s t rength  on t h e  axis occurred at  t h e  magnetic mirrors  and was 1.0 T f o r  

t h i s  experiment. The c o i l s  were arranged with a mirror r a t i o  
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/B = 0,38. The steady-state, modified Penning dischargex8 was Bmin m a x  
used i n  t h e  present  series of  experiments to produce a hot-ion plasma, 

t h e  range of parameters of which are shown i n  Table I* 

A cut-away top  v i e w  of t h e  vacuum tank i s  shown i n  Fig. 7. The 

forked probe mount used t o  compare t h e  probes i n  question was posit ioned 

so t h a t  a 180-degree ro t a t ion  about i t s  axis would interchange t h e  two 

probe t i p s  so t h a t  they could a l t e rna te ly  sample the  same volume of 

plasma. It i s  estimated t h a t  t he  probe t i p s ,  after r o t a t i o n  by 180 

degrees, were within the  same cubical volume 2 mm on a s ide .  

probe was 2.48 cm from t h e  magnetic axis of the plasma, and p a r a l l e l  t o  

it. 

m a x i m u m  axial magnetic f i e l d  gradient ,  9,4 cm from the midplane. 

magnetic f i e l d  a t  t h e  probe t i p s  was 0.65 21, t h e  radial magnetic f ie ld  

gradient  2.35 T/m, and t h e  axial magnetic f ie ld  gradient 6.0 T/m. 

These magnetic f ie lds  and magnetic f i e l d  gradients  are uncertain by 5 

percent.  

were on the  order of hundreds o f  v o l t s  at the  probe t i p .  

Each 

The axial pos i t ion  of t he  probes was chosen at the  pos i t ion  of 

The 

The absolute value of the  peak-to-peak o s c i l l a t i o n s  i n  po ten t i a l  

The k i n e t i c  temperature and r e l a t i v e  number densi ty  of t h e  ions  

escaping through the magnetic mirrors were measured by a re ta rd ing  

p o t e n t i a l  energy analyzer. l9 Precautions were taken t o  maintain the 

plasma proper t ies  constant during the  course of a paired comparison run. 

Absolute values of the e lec t ron  number densi ty  and k i n e t i c  temperature 

were measured by taking conventional Langmuir probe t r aces  at  t h e  loca- 

t i o n  within the  plasma at  which the  pa i red  comp ison tests were performed, 

The plasma as a whole was a strong r ,  f ,  r ad ia to r  i n  t h e  range in-  

vest igated.  Some of th&s radia t ion  was picked up by t h e  instrumentation 
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and contributed t o  the system background noise  i n  s p i t e  of  shielding 

precautions. The t o t a l  system noise was determined by grounding the  

input  to t h e  lA5 amplifier.  

s j g n a l  detected by t h e  probe a t  a given frequency. 

This noise was subtracted from t h e  t o t a l  

The probe s igna l  

became comparable t o  the  system noise  only at t h e  lowest turbulent  

amplitudes ana/or plasma energy dens i t i e s  invest igated.  

PAIRED COMPARTSON TESTS 

The operating conditions were fixed a t  the beginning of each ex- 

perimental run, and t h e  plasma allowed t o  stabilize f o r  a t  least 5 

minutes before da ta  were taken. 

p o t e n t i a l  curve was taken t o  determine the ion anergy. 

spec t ra  were taken from both probes. 

are shown i n  Pig. 8 f o r  the frequency range 0.2 t o  LO MHz. 

When the  plasma s t ab i l i zed ,  a retarding-  

Turbulence 

Typical spec t ra  from both probes 

These da t a  

were tabulated,  corrected for the  non l inea r i t i e s  i n  the observing 

system, and converted t o  a logarithmic base. 

data f o r  both probes shown i n  Fig. 8 is  p lo t t ed  i n  Fig. 9. 

frequency response of both probes was the same within experimental 

e r r o r  below about 4 MHz. 

studied.  

Langmuir probe out of th i s  frequency implies that t h e  e f f ec t ive  source 

r e s i s t ance  of t h e  plasma f luc tua t ions  i s  equivalent t o  a pure res i s tance  

of no more than about 400 ohms. 

at the probe t i p  was 5 MHz i n  t h e  present experiment. 

The r a t i o  of the corrected 

The relative 

This r e s u l t  held t r u e  f o r  a l l  plasma conditions 

The f l a t n e s s  of t h e  r e l a t i v e  frequency response of t h e  shielded 

The ion cyclotron resonance frequency 

Under the con- 

d i t i o n s  studied a d ip  i n  the turbulence spectrum, such as t h a t  reported 

by Batten e t  a1.l was not observed a t  t h i s  frequency. 
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A total of  44 pa i red  comparisons were made of  t h e  shielded Lang- 

muir probe wi th  t h e  ceramic covered capaci t ive probe i n  t h e  present  

invest igat ion.  

of  t h e  four  categories  i l l u s t r a t e d  schematically- i n  Fig. 10, o r  i n t o  a 

f i f%h category which included a l l  o ther  types of relative frequency 

response. 

probe s i g n a  falls  o f f  relative to t h e  capaci t ive probe, but no noise  

The spec t ra  from these runs were c l a s s i f i e d  i n t o  one 

Figure 10( a) i l l u s t r a t e s  the s i t u a t i o n  i n  which the Langmuir 

L 

i s  observed from t h e  former near t h e  upper frequency l i m i t .  

t h i s  ty-pe were observed a t  intermediate o r  low turbulen t  amplitudes 

Data of 

and/or plasma energy densikies.  

type.  

probe s igna l ,  but  wi th  a “spurious” s igna l  detected by it a t  higher 

frequencies.  

served at  intermediate or high turbulent  mnplitudes and/or plasma 

energy dens i t i e s  i n  t h e  range studied. 

s i t u a t i o n  i n  which t h e  Langmuir probe t r a c e  disappeared i n t o  t h e  system 

45.5 percent of t h e  runs were of t h i s  

Figure JO(b) i l l u s t r a t e s  t h e  relative f a l l - o f f  of  t h e  Langmuir 

34 percent of  t h e  runs were o f  t h i s  type, and were ob- 

Figure lO(c) i l l u s t r a t e s  the 

noise  before t h e  relative f a l l - o f f  could be observed, bu t  t h e  “spurious” 

s i g n a l  a t  high frequencies was  above t h e  noise.  4,6 percent of the 

runs were o f t h i s  type, and were observed a t  intermediate tu rbulen t  

amplitudes and/or plasma energy dens i t i e s  i n  the range studied. 

lO(d) i s  t h e  case i n  which the spectrum of  one or  both probes dis- 

appeared i n  t h e  system noise  below a frequency of 10 MHz, and ne i ther  

the relative f a l l - o f f  nor the. noise at higher frequencies could be ob- 

served. 13.6 percent of t h e  runs were of t h i s  type, and were observed 

at the lowest tu rbulen t  amplitudes and/or plasma energy dens i t i e s  i n  the 

Figure 
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range studied. 

o s c i l l a t i o n  peaks, although t h e  simultaneous appearance of such peaks 

i n  both spec t ra  were of ten  observed. The absolute  number and percentage 

o f  t h e  44 pai red  comparisons t h a t  f e l l  i n t o  these  categories  i s  shown i n  

Table 111. 

pick-up of t h e  Langmuir probe was not observed, t h i s  may w e l l  have been 

because they were below the  system noise  threshold,  and masked by it. 

There were no clear-cut  cases observed i n  which t h e  probe s igna l  was 

w e l l  above t h e  noise,  and these  fea tures  were absent. 

The spec t ra  shown schematically i n  Fig. 10 are without 

When e i t h e r  the r e l a t i v e  f a l l - o f f  or t h e  spurious noise  

A total of 13 addi t iona l  runs were made comparing the  ceramic with 

t h e  pyrex covered capaci t ive probes. 

types of probes was i d e n t i c a l  within experimental error over t h e  *e- 

quency range s tudied.  

pared with an unshielded Langmuir probe. 

e s s e n t i a l l y  the same behavior as that  observed with t h e  shielded Lang- 

muir probe comparisons. 

shielded and unshielded Langmuir probe response, 

The relative response of these  two  

The ceramic covered capaci t ive probe was com- 

A t o t a l  of  16 runs showed 

A t o t a l  of 17 runs were taken t o  compare t h e  

The relative response 

of these  two probes was e s s e n t i d l y  t h e  same, except fo r  a higher 

spurious noise  s igna l  f o r  the  unshielded Langmuir probe at  frequencies 

from 7 t o  10 MHz. 

CONCLUSLONS 

The pa i red  comparison runs performed i n  t h i s  study appear t o  j u s t i e  

t h e  following conclusions: 
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1. Over the range of  plasma parameters covered i n  t h i s  study, 

and l isted i n  Table I, the relative f'requency response of  capaci t ive and 

f loa t ing ,  shielded Langmuir probes i s  the same to w i t h i n  k20 percent 

up t o  about 4 MHz. 

2. For the conditions invest igated,  the response of  the f loa t ing ,  

shielded Langmuir probe falls of f  relative t o  that of  t he  capaci t ive 

probe at  about 4 MHz. 

3. For the plasma Conditions inves t iga ted ,  the floating, shielded 

Langmuir probe detected subs t an t i a l ly  more s i g n a l  between 7 to LO MHz 

than did the capaci t ive probe, 

r e l a t e d  to any na tura l  frequency of o s c i l l a t i o n  of the plasma l i s ted  i n  

Table I, and maly be associated with processes i n  the sheath surrounding 

the Langmuir probe t i p  that are not prevalent i n  t he  sheath surrounding 

the  capaci t ive probe. 

This "spurious" s igna l  could not be 

4. Over the range o f  conditions invest igated,  the relative response 

or" capaci t ive probes wi th  a pyrex and ceramic envelope were i d e n t i c a l  

within the experimental, error, 

5. Over the range of  plasma conditions invest igated,  the relative 

response of the  f l o a t i n g  shielaed and unshielded Langmuir probes were 

the same, except for the grea te r  signa3 amplitude, from 7 t o  10 MHz, of 

the unshielded probe. 

6 .  A dip  i n  the spectrum at  the ion  cyclotron frequency, reported 

by Batten e t  al.: was not observed i n  the present  inves t iga t ion ,  
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7. I n  terms of physical  ruggedness and frequency response i n  

the  workbench ca l ib ra t ion  apparatus, t he  capac i t ive  probe is  superior  

t o  t h e  f loa t ing ,  shielded Langmuir probe f o r  measurement of t he  spectrum 

of e l e c t r o s t a t i c  p o t e n t i a l  f luc tua t ions  i n  a plasma. 
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TWM I 

PLASMA CHARACTERISTIC 

Neutral  number densi ty  

Electron number densi ty  

Electron k i n e t i c  temperature 

Ion k i n e t i c  temperature 

Plasma p o t e n t i a l  

Electron plasma frequency 

Electron Gyro frequency 

Ion plasma frequency (D ) + 
4- Ion  gyro frequency ( D  ) 4- Ion  gyro frequency ( D  ) 

Debye d is tance  

Langmuir probe roll-of f' frequencj 

Low value High value 

7 3  5x10 8 3  /cm 
5x10 /an 

8.3 ev 38 ev 

350.0 eV 930 ev 

+45 v o l t s  +230 v o l t s  

64 MHZ 202 MHZ 

18 GHz 

1.0 MHZ 3.3 MHz 

I 

0.1 mm 6.5 mm 

I 

2.7 MHZ 5.5 MHZ 
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TABLE IT 

Capacitive probe 

TULE 1x1 TULE 1x1 

Response category 

Figure l o ( a )  

Figure 10(b) 

Figure lO(c) 

Figure 10(d) 

Other 

Yumber o f  run: 

20 

1 5  

2 

6 

1 
4zi' 

Percentage of t o t a l ,  
% 

45.5 

34.0 

4.6 

13.6 

2*3  - 
100 
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TABLE CAPTIONS 

Table I Range of plasma sha rac t e r i s t i c s  a t  probe locat ion.  A31 runs 

were made w i t h  deuterium gas i n  a magnetic mirror configura- 

t i o n  wi th  a mirror r a t i o  of 2.6~1, a maximum magnetic f ield 

of 1.0 T, and a magnetic f ield a t  the probe t i p  of  0.65 T. 

Measured equivalent c i r c u i t  parameters of the  probes inves t i -  

gated. 

Table 111 The number of rung i n  each of f i v e  response categories 

i l l u s t r a t e d  i n  Fig. 10. 

probe response r e l a t i v e  to that of the  capacit ive probe, 

while sampling the same volume of plasma 

Table 11 

These show the nature of the Langmuir 
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FIGURE CAI?TIONS 

(1) Cross sec t iona l  drawing of two of the four  types of  probes used 

( a )  Shielded Langmuir probe. i n  this inves t iga t ion .  

probe wire i s  coaxial ly  shielded t o  within 6 mm of the end. 

Note that the inner  

The un- 

shielded Langmuir probe is  iden t i ca l ,  but  without the coaxial  shield f o r  

a d i s tance  of 44 mm from the probe t i p .  

probe. 

but  had a pyrex envelope ins tead  of the c e r w c  one shown i n  the i l l u s -  

t r a t i o n .  

(b )  Ceramic covered capaci t ive 

The pyrex covered capaci t ive probe was i d e n t i c a l  i n  a l l  respects, 

(2)  Equivalent c i r c u i t s  of  both probes. Typical values are shown i n  

Table 11. The cable capacitance C2 f o r  both probes was high due t o  the 

unavoidably long separat ion of the  probes from the  cathode followers.  

capacitance Cl is  the capacitance from the probe t i p  t o  ground, and C 

from the capaci t ive probe t i p  t o  the plasma. 

r e s i s t ance  of the plasma. ( a )  Shielded Langmuir probe. (b )  Capacitive 

probe. 

The 

3 
Rs i s  the e f f e c t i v e  source 

(3) Theoret ical  frequency response for  both probes. Note that  

ord ina te  i s  r a t i o  of amplitudes, not  dB. The so l id  l i n e  i s  that of the 

f l o a t i n g  shielded Langmuir probe, from Eq. (1) , given for  several values 

of the source res i s tance .  

of the capaci t ive probe, as given by Eq, (2), f o r  severa l  values of the 

source res i s tance .  

(b)  The dot ted  l i n e  i s  the frequency response 

(4)  Schematic d i a g r w  of instrumentation used f o r  probes. The 

d i f f e r e n t i a l  amplifier shown was not used i n  the d i f f e r e n t i a l  mode for 

th i s  inves t iga t ion .  !Phe high pass f i l t e r  was set a t  150 kHz t o  avoid 
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overloading t h e  spectrum analyzers.  

frequency range 0.1 t o  1.0 MHz, and t h e  lL10 uni t  over t h e  range 1.0 t o  

10.0 MHZ. 

The Tektronix l L 5  was used over t h e  

(5) Schematic of i n  s i t u  ca l ib ra t ion  i n  vacuum tank wi th  ca l ib ra t ion  

cup. The inner  p l a t e  of  t h e  ca l ib ra t ion  cup was driven with a constant 

amplitude s igna l  Prom a var iab le  frequency o s c i l l a t o r .  

(6) Measured frequency response of capaci t ive and shielded Langrnuir 

probes, using e n t i r e  system without high-pass f i l t e r  t o  cut  o f f  t h e  la rge  

amplitude s igna l  below 150 kHz. Note that ,  in the absence of plasma, t h e  

two probes had an e s s e n t i a l l y  f la t  response over the frequency range from 

0.2 t o  10 MHz. (1) Capacitive probe. (2)  Shielded Z m p u i r  pro%-e. 

(7) Top view of experimen"c1 apparatuux. The two probes under t e s t  

are p a r a l l e l  and separated by 44 rm.  The probe assembly i s  so mounted 

that a 180 degree ro t a t ion  w i l l  interchange t o  the pos i t ion  of the two 

probes. 

(8) Typical spec t ra  measured by the two probes, corrected f o r  small 

non l inea r i t i e s  of the measuring system, aiid nornalized to the amplitude 

a t  1.0 MHz. System noise  was subtracted off' before p lo t t ing .  

capaci t ive probe. 

(b )  Shielded Langmuir probe. Note r ap id  f a l l - o f f  above 4 MHz, and noise 

picked up at high frequencies that  i s  more in tense  than t h a t  detected by 

the capaci t ive probe. 

(a)  Ceramic 

Note absence of  s igna l  a t  frequencies nea r  10 MHz. 

(9) Rat io  of response detected by shielded LEzngmuir probe t o  t h a t  

of capaci t ive probe, normalized t o  uni ty  a t  1,O mz. 

i n  t h i s  r a t i o  was approximately 220%. 

Experimental e r r o r  

Note r e l a t i v e  f a l l - o f f  of shielded 
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Langmuir probe response above 4 MHz, and the presence of more noise  

detected by the Langmuir probe at  frequencies from 7.0 t o  10.0 MHz, 

than was detected by the capaci t ive probe. 

(10) Four types of r e l a t i v e  probe cha rac t e r i s t i c s  most fYequently 

observed when comparing the ceramic covered capaci t ive probe with the 

shielded Langmuir probe. ( a )  Fall-off of the Langmuir probe r e l a t i v e  

to the capaci t ive probe at about 4 MHz, without Langrauir probe noise  at  

i n  the  v i c i n i t y  of 8.0 MHa. 

t o  the capac i t ive  probe at about 4 MHz, w i t h  presence of Langmuir probe 

noise  a t  i n  the, v i c i n i t y  of  8.0 MHz. ( e )  Rela t ive  f a l l - o f f  of Langmuir 

probe not apparent ( a t  least i n  par t  because the s igna l  of  one or  both 

probes disappeared i n  the  noise below 4 MHz), but  L a n p u i r  probe noise  

was observed. 

frequencies so  low tha t  ne i ther  the relative f a l l - o f f  of  the Langmuir 

probe nor the Langmuir probe noise  at  higher frequencies could be 

ob served. 

(b )  Fa l l -of f  of  the Langmuir probe r e l a t i v e  

( a )  The s igna l  of both probes disappeared i n  the noise at  
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